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Abstract — I am presenting the first of its kind 

project, the first link-state routing solution carrying 

traffic through packet-switched networks. At each 

node, for every other node, the algorithm 

independently and iteratively updates the fraction of 

traffic destined to that leaves on each of its outgoing 

links. At each iteration, the updates are calculated 

based on the shortest path to each destination as 

determined by the marginal costs of the network’s 

links. The marginal link costs used to find the shortest 

paths are in turn obtained from link-state updates that 

are flooded through the network after each iteration. 

For stationary input traffic, we prove that our project 

converges to the routing assignment that minimizes 

the cost of the network. Furthermore, I observe that 

our technique is adaptive, automatically converging to 

the new optimal routing assignment for quasi-static 

network changes. I also report numerical and 

experimental evaluations to confirm our theoretical 

predictions, explore additional aspects of the solution, 

and outline a proof-of-concept implementation of 

proposal. 
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I. INTRODUCTION 

Since the advent of ARPANET [3], the predecessor of 

the Internet, Optimal routing i.e., finding routing 

assignments that minimize the cost of sending traffic 

through packet-switched networks, has been of 

fundamental research and practical interest. Yet today, 

we find that the different optimal routing algorithms 

developed over the last 40 years are seldom 

implemented. Instead, distributed link-state routing 

protocols like OSPF/IS-IS that support hop-by-hop 

packet forwarding are the dominant intra-domain 

routing solutions on the Internet. 

 

The driving force behind the widespread adoption of 

link-state, hop-by-hop algorithms has been their 

simplicity—the main idea is to centrally assign 

weights to links based on input traffic statistics, flood 

the link weights through the network, and then locally 

forward packets to destinations along shortest paths 

computed from the link weights. As our 

communication networks have grown rapidly in size 

and complexity, this simplicity has helped OSPF 

eclipse extant optimal routing techniques that are 

harder to implement. 

 

However, the obvious tradeoff has been lost 

performance. For instance, due to the poor resource 

utilization resulting from OSPF, network 

administrators are forced to overprovision their 

networks to handle peak traffic. As a result, on 

average, most network links run at just 30%–40% 

utilization. To make matters worse, there seems to be 

no way around this tradeoff. In fact, given the offered 

traffic, finding the optimal link weights for OSPF, if 

they exist, has been shown to be NP-hard [4]. 

Furthermore, it is possible for even the best weight 
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setting to lead to routing that deviates significantly 

from the optimal routing assignment [4]. 

 

My goal in this paper is to eliminate this tradeoff 

between optimality and ease of implementation in 

routing. So, I proposed this hop-by-hop routing 

solution, a routing solution that retains the simplicity 

of link-state, hop-by-hop protocols while iteratively 

converging to the optimal routing assignment. To the 

best of our knowledge, this is the first optimal link-

state hop-by-hop routing solution. Not surprisingly, 

there are multiple challenges to overcome when 

designing such a solution. Before getting into them, 

we define the following important recurring terms for 

ease of exposition. 

 

Hop-by-hop: Each router, based on the destination 

address, controls only the next hop that a packet takes. 

 

Adaptive: The algorithm does not require the traffic 

demand matrix as an explicit input in order to compute 

link weights. Specifically, the algorithm seamlessly 

recognizes and adapts to changes in the network, both 

topology changes and traffic variations, as inferred 

from the network states like link flow rates.  

 

Link-state: Each router receives the state of all the 

network’s links through periodically flooded link-state 

updates and makes routing decisions based on the link 

states. 

 

Optimal: The routing algorithm minimizes some cost 

function (e.g., minimize total delay) determined by the 

network operator. The problem of guiding network 

traffic through routing to minimize a given global cost 

function is called traffic engineering (TE). 

 

The first design challenge stems from coordinating 

routers only using link states. This means that no 

router is aware of all the individual communicating 

pairs in the network or their traffic requirements. 

However, they still have to act independently such that 

the network cost is minimized. This is a very real 

restriction in any large dynamic network like the 

Internet, where it is not possible to obtain information 

about each communicating pair. If the link-state 

requirement is set aside, optimal distance-vector 

routing protocols have already been developed [2]. 

The idea there is to iteratively converge to the optimal 

routing assignment by sharing estimates of average 

distances to destinations among neighbors. However, 

distance-vector protocols have not caught on for intra-

domain routing because of scalability issues due to 

their slow convergence and robustness issues like 

vulnerability to a single rogue router taking down the 

network as in the “Internet Routing Black Hole” 

incident of 1997 [5]. 

 

The hop-by-hop forwarding requirement presents the 

next challenge. As a result, a router cannot determine 

the entire path that traffic originating at it takes to its 

destination. Without this requirement, a projected 

gradient approach [6] can be used to yield optimal 

iterative link-state algorithms that can be implemented 

with source routing, where the path a packet takes 

through the network is encoded in its entirety at the 

source. However, the need for source routing means 

that these techniques are not practical given the size of 

modern networks. 

 

Another challenge arises because the optimal routing 

assignment changes with the input traffic and the 

network. There are two aspects to this problem. The 

first aspect is that the algorithm needs sufficient time 

between network and traffic changes to calculate and 

assign optimal routes. This requirement is typically 

captured by the quasi-static model of routing problems 

described by Gallager [2]. The second aspect is that 
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the algorithm should smoothly adapt the routes to 

changes when they do occur. Thus, ideally, the 

algorithm should avoid global inputs that require 

additional computation when performing routing 

updates. However, the algorithm also needs some way 

to track the network state to compute efficient routes. 

Link rates fill this gap because they are widely 

available and easily accessible in modern networks. 

The first aspect is modeled by studying a static 

network with static input traffic in between changes in 

the network. If the second stipulation is set aside, 

recently, significant progress was made in this 

direction with PEFT, a link-state protocol with hop-

by-hop forwarding based on centralized weight 

calculations [7]. However, since the link weights are 

calculated in a centralized manner with the traffic 

matrix as an explicit input, PEFT is not adaptive. Nor 

does it always guarantee optimality as claimed in the 

paper. 

II. PROBLEM FORMULATION 

 

Under the quasi-static model, the traffic engineering 

problem can be cast as a Multi-Commodity Flow 

(MCF) problem in between topology and input traffic 

changes.Wemodel the network as a directed graph G = 

(V,E) with node/router set and edge/ link set with link 

capacities Cu,v, ¥(u,v) € E . The rate required for 

communication from s to t is represented by D(s,t). 

The commodities are defined in terms of their final 

destination t. We use f 
t
u,v to represent the flow on link 

(u,v) corresponding to commodity t and f 
t
u,v  for the 

total flow on link (u,v). The network cost function,  

, is typically selected to be a convex function of the 

link rate vector 

f = { fu,v },¥(u,v) € E. Using this notation, the MCF 

problem can be stated as 

 

 

 

A fact about MCF is that its optimal solution generally 

results in multipath routing instead of single-path 

routing [1]. However, finding the right split ratios for 

each router for each commodity is a difficult task. Our 

starting point is to merge the link-state feature of the 

source-routing protocols with the hop-by-hop 

forwarding feature of the distance-vector schemes. 

Another characteristic that we borrow is the iterative 

nature of these algorithms. Here, each iteration is 

defined by the flooding of existing link states through 

the network followed by every router updating its split 

ratios, which modifies the link states for the next 

iteration. In what follows, we measure time in units of 

iterations. With this idea in mind, in the time between 

network changes when the topology and the input 

traffic is static, we do the following. 

 

Iteratively adjust each router’s split ratios and move 

traffic from one outgoing link to another. This only 

controls the next hop on a packet’s path leading to 

hop-by-hop routing. If instead we controlled path 

rates, we would get source routing. 

 

Increase the split ratio to the link that is part of the 

shortest path at each iteration even though the average 

price via the next-hop router may not be the lowest. If 

instead we forwarded traffic via the next-hop router 

with the lowest average price, we get Gallager’s 

approach, which is a distance vector solution. 

 

Adapt split ratios dynamically and incrementally by 

decreasing along links that belong to non-shortest 
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paths while increasing along the link that is part of the 

shortest path at every router. If instead split ratios are 

set to be positive instantaneously only to the links 

leading to shortest paths, then we get OSPF with 

weights, wu,v 

III. SPECIAL CASES 

In order to develop an intuitive understanding of why 

our solution takes the form that it does, it is helpful to 

consider a few concrete special cases first. These four 

cases, each of which clearly highlights the reason for 

including a particular factor in our solution, 

progressively lead us to the final algorithm. In each 

example, our algorithm design will exploit the fact 

that the KKT optimality conditions [15] of the MCF 

problem require that at the optimal solution the traffic 

rate is positive only along paths with the lowest price. 

The overall idea behind these examples is to design an 

algorithm that reduces the network cost at each 

iteration by moving to a routing assignment that 

satisfies this condition. In Section V, we will extend 

these ideas and show that the final algorithm that 

iteratively reduces the network cost will also always 

lead to the optimal routing assignment. 

 

Finding the Right Split Dynamically 

 

First, let us consider a very simple example illustrated 

in Fig. 1(a). Here, there is traffic demand of rate with 

the choice of two links, l and s, to go from A to B. 

Assuming initially wl>ws, a simple strategy to reach 

optimality will be to dynamically shift traffic at some 

rate δ > 0 from the more expensive link to the cheaper 

link till the prices of the two links become the same. 

At node A, this would be equivalent to 

αl decreasing αs and increasing at rate δ/r. 

 

There are two ways to interpret and generalize the 

intuition gained from this scenario. Both give the same 

solution for this very simple example, but in general 

will lead to different dynamics (see Fig. 2) and 

possibly different split ratios. One interpretation, 

which underpins the distance- vector algorithms, is 

that the router should shift traffic away from 

neighbors with higher average price to the neighbor 

with the lowest average price. A different 

interpretation, which is the basis of our protocol, is 

that the router should shift traffic from links along 

more expensive paths to the link along the path with 

the lowest price. Mathematically, we reach the 

following update rule for the split ratios:  

 

 

 

where (u,v) € E but is not on the shortest path from to.  
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Figure 1 Four illustrative examples 

 

 

Figure 2 Trajectories taken by Gallager’s algorithm 

  

 

IV. GENERAL SOLUTION 

 

We begin by defining n
t
u, the branch cardinality, as 

the product of the number of branches encountered in 

traversing the shortest path tree rooted at t from t to u. 

It makes sure that routers on the tree that are farther 

away from the destination shift traffic to the shortest 

path more conservatively than routers that are closer 

to the destination. At every iteration due to link-state 

flooding, each node u has the link-state information to 

run Dijkstra’s algorithm to compute the shortest path 

tree to destination t. Here, additional care is required 

because every node has to locally arrive at the same 

shortest path tree to ensure that the algorithm proceeds 

as expected. Therefore, at any stage, while running 

Dijkstra’s algorithm locally, if there is ambiguity as to 

which node should be added next, tie-breaking based 

on node index is used. In other words, if at any 

iteration there are multiple shortest paths to choose 

from, tie-breaking is used to ensure that all routers 

arrive at the same shortest path tree. The calculation 

n
t
u of proceeds as shown in Algorithm1.  

 

 

V. RELATED WORK 

Over the years, due to its importance, traffic 

engineering has attracted a lot of research attention. 

We provide a brief overview of major related results 

from different communities such as control, 

optimization, and networking. Broadly, the existing 

work can be divided into OSPF-TE, MPLS-TE, traffic 

demand agnostic/ oblivious routing protocol design, 

and optimal routing algorithms. 

 

The work on OSPF [4], [8], [9] has concentrated on 

using good heuristics to improve the centralized link 

weight calculations. Although these techniques have 

been shown to improve the algorithm’s performance 

significantly by finding better weight settings, the 

results are still far from optimal. 
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Typically, these and other centralized traffic 

engineering techniques also require reliable estimates 

or measurements of the input traffic statistics in the 

form of a traffic matrix. While excellent work has 

been done in traffic matrix estimation from link loads, 

even the best results have errors on the order of 20% 

[10], which can lead to bad traffic engineering. 

Another approach is to directly measure the traffic to 

every destination at every router. While it is possible 

to globally aggregate the measurements into a traffic 

matrix that can be fed to a traffic engineering 

algorithm, it is more straightforward to use local 

measurements locally. Also, usually it is smoother and 

quicker to respond to changes locally when they do 

occur. Thus, we are advocating a shift to relying 

directly on link loads and local traffic measurements 

instead of computing a traffic matrix for traffic 

engineering.  

 

A good way to avoid traffic matrices and a popular 

way to implement traffic engineering today is MPLS-

TE [11], [12]. The idea is to compute end-to-end 

tunnels for traffic demands with the available network 

bandwidth being assigned to new traffic demands 

using techniques like Constrained Shortest Path First. 

However, here, the performance gained over OSPF 

comes at the cost of establishing multiple end-to-end 

virtual circuits. Moreover, as the traffic changes, the 

end-to-end virtual circuits that were established for a 

particular traffic pattern become less useful, and 

performance degrades. 

 

Oblivious routing has also been proposed as a way 

around using traffic matrices for traffic engineering. 

The idea is to come up with a routing assignment that 

performs well irrespective of the traffic demand by 

comparing the “oblivious performance ratio” of the 

routing, i.e., the worst-case performance of the routing 

for a given network over all possible demands. 

Breakthrough work in this area includes papers by 

Applegate and Cohen [13] that developed a linear 

programming method to determine the best oblivious 

routing solution for the special case of minimizing 

maximum channel utilization and Kodialam et al. [14] 

that focused on maximizing throughput for the special 

case of two-phase routing. However, oblivious routing 

solutions do not adapt well to changes in the network 

VI. CONCLUSION 

In this paper, I developed the first link-state, hop-by-

hop routing algorithm that optimally solves the traffic 

engineering problem for intra-domain routing on the 

Internet. Furthermore, we showed that based on 

feedback from the link-state updates, the protocol 

automatically adapts to input traffic and topology 

changes by adjusting router split ratios. We also 

provided guidelines on implementing my project by 

translating the theoretical model to a discrete 

implementation for numerical evaluations and then to 

a physical testbed built on NetFPGA boards. 

Importantly, although they did not satisfy the 

theoretical assumptions about continuous split ratio 

updates and synchronization between the routers, the 

numerical and experimental evaluations backed up our 

theoretical predictions about the performance and 

adaptively of this project. In terms of future directions, 

there are still interesting areas to be explored. For 

instance, the convergence rate of the algorithm needs 

to be analyzed. Another direction involves developing 

the theory behind the performance of algorithm in the 

absence of synchronous link-state updates and 

executions.  
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