
IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

83 www.ijdcst.com

A Novel optimal routing using Hop-by-Hop

Adaptive linking

Dasari Pujitha1, Sayeed Yasin2

1 M.Tech (cse), Nimra College of Engineering and Technology, AP., India.

2Head of the Department, Dept. of Computer Science & Engineering, Nimra College of Engineering and Technology, AP.,

India.

Abstract — I am presenting the first of its kind

project, the first link-state routing solution carrying

traffic through packet-switched networks. At each

node, for every other node, the algorithm

independently and iteratively updates the fraction of

traffic destined to that leaves on each of its outgoing

links. At each iteration, the updates are calculated

based on the shortest path to each destination as

determined by the marginal costs of the network’s

links. The marginal link costs used to find the shortest

paths are in turn obtained from link-state updates that

are flooded through the network after each iteration.

For stationary input traffic, we prove that our project

converges to the routing assignment that minimizes

the cost of the network. Furthermore, I observe that

our technique is adaptive, automatically converging to

the new optimal routing assignment for quasi-static

network changes. I also report numerical and

experimental evaluations to confirm our theoretical

predictions, explore additional aspects of the solution,

and outline a proof-of-concept implementation of

proposal.

Keywords — IP networks, load balancing, network

management, optimal routing.

I. INTRODUCTION

Since the advent of ARPANET [3], the predecessor of

the Internet, Optimal routing i.e., finding routing

assignments that minimize the cost of sending traffic

through packet-switched networks, has been of

fundamental research and practical interest. Yet today,

we find that the different optimal routing algorithms

developed over the last 40 years are seldom

implemented. Instead, distributed link-state routing

protocols like OSPF/IS-IS that support hop-by-hop

packet forwarding are the dominant intra-domain

routing solutions on the Internet.

The driving force behind the widespread adoption of

link-state, hop-by-hop algorithms has been their

simplicity—the main idea is to centrally assign

weights to links based on input traffic statistics, flood

the link weights through the network, and then locally

forward packets to destinations along shortest paths

computed from the link weights. As our

communication networks have grown rapidly in size

and complexity, this simplicity has helped OSPF

eclipse extant optimal routing techniques that are

harder to implement.

However, the obvious tradeoff has been lost

performance. For instance, due to the poor resource

utilization resulting from OSPF, network

administrators are forced to overprovision their

networks to handle peak traffic. As a result, on

average, most network links run at just 30%–40%

utilization. To make matters worse, there seems to be

no way around this tradeoff. In fact, given the offered

traffic, finding the optimal link weights for OSPF, if

they exist, has been shown to be NP-hard [4].

Furthermore, it is possible for even the best weight

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

84 www.ijdcst.com

setting to lead to routing that deviates significantly

from the optimal routing assignment [4].

My goal in this paper is to eliminate this tradeoff

between optimality and ease of implementation in

routing. So, I proposed this hop-by-hop routing

solution, a routing solution that retains the simplicity

of link-state, hop-by-hop protocols while iteratively

converging to the optimal routing assignment. To the

best of our knowledge, this is the first optimal link-

state hop-by-hop routing solution. Not surprisingly,

there are multiple challenges to overcome when

designing such a solution. Before getting into them,

we define the following important recurring terms for

ease of exposition.

Hop-by-hop: Each router, based on the destination

address, controls only the next hop that a packet takes.

Adaptive: The algorithm does not require the traffic

demand matrix as an explicit input in order to compute

link weights. Specifically, the algorithm seamlessly

recognizes and adapts to changes in the network, both

topology changes and traffic variations, as inferred

from the network states like link flow rates.

Link-state: Each router receives the state of all the

network’s links through periodically flooded link-state

updates and makes routing decisions based on the link

states.

Optimal: The routing algorithm minimizes some cost

function (e.g., minimize total delay) determined by the

network operator. The problem of guiding network

traffic through routing to minimize a given global cost

function is called traffic engineering (TE).

The first design challenge stems from coordinating

routers only using link states. This means that no

router is aware of all the individual communicating

pairs in the network or their traffic requirements.

However, they still have to act independently such that

the network cost is minimized. This is a very real

restriction in any large dynamic network like the

Internet, where it is not possible to obtain information

about each communicating pair. If the link-state

requirement is set aside, optimal distance-vector

routing protocols have already been developed [2].

The idea there is to iteratively converge to the optimal

routing assignment by sharing estimates of average

distances to destinations among neighbors. However,

distance-vector protocols have not caught on for intra-

domain routing because of scalability issues due to

their slow convergence and robustness issues like

vulnerability to a single rogue router taking down the

network as in the “Internet Routing Black Hole”

incident of 1997 [5].

The hop-by-hop forwarding requirement presents the

next challenge. As a result, a router cannot determine

the entire path that traffic originating at it takes to its

destination. Without this requirement, a projected

gradient approach [6] can be used to yield optimal

iterative link-state algorithms that can be implemented

with source routing, where the path a packet takes

through the network is encoded in its entirety at the

source. However, the need for source routing means

that these techniques are not practical given the size of

modern networks.

Another challenge arises because the optimal routing

assignment changes with the input traffic and the

network. There are two aspects to this problem. The

first aspect is that the algorithm needs sufficient time

between network and traffic changes to calculate and

assign optimal routes. This requirement is typically

captured by the quasi-static model of routing problems

described by Gallager [2]. The second aspect is that

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

85 www.ijdcst.com

the algorithm should smoothly adapt the routes to

changes when they do occur. Thus, ideally, the

algorithm should avoid global inputs that require

additional computation when performing routing

updates. However, the algorithm also needs some way

to track the network state to compute efficient routes.

Link rates fill this gap because they are widely

available and easily accessible in modern networks.

The first aspect is modeled by studying a static

network with static input traffic in between changes in

the network. If the second stipulation is set aside,

recently, significant progress was made in this

direction with PEFT, a link-state protocol with hop-

by-hop forwarding based on centralized weight

calculations [7]. However, since the link weights are

calculated in a centralized manner with the traffic

matrix as an explicit input, PEFT is not adaptive. Nor

does it always guarantee optimality as claimed in the

paper.

II. PROBLEM FORMULATION

Under the quasi-static model, the traffic engineering

problem can be cast as a Multi-Commodity Flow

(MCF) problem in between topology and input traffic

changes.Wemodel the network as a directed graph G =

(V,E) with node/router set and edge/ link set with link

capacities Cu,v, ¥(u,v) € E . The rate required for

communication from s to t is represented by D(s,t).

The commodities are defined in terms of their final

destination t. We use f
t
u,v to represent the flow on link

(u,v) corresponding to commodity t and f
t
u,v for the

total flow on link (u,v). The network cost function,

, is typically selected to be a convex function of the

link rate vector

f = { fu,v },¥(u,v) € E. Using this notation, the MCF

problem can be stated as

A fact about MCF is that its optimal solution generally

results in multipath routing instead of single-path

routing [1]. However, finding the right split ratios for

each router for each commodity is a difficult task. Our

starting point is to merge the link-state feature of the

source-routing protocols with the hop-by-hop

forwarding feature of the distance-vector schemes.

Another characteristic that we borrow is the iterative

nature of these algorithms. Here, each iteration is

defined by the flooding of existing link states through

the network followed by every router updating its split

ratios, which modifies the link states for the next

iteration. In what follows, we measure time in units of

iterations. With this idea in mind, in the time between

network changes when the topology and the input

traffic is static, we do the following.

Iteratively adjust each router’s split ratios and move

traffic from one outgoing link to another. This only

controls the next hop on a packet’s path leading to

hop-by-hop routing. If instead we controlled path

rates, we would get source routing.

Increase the split ratio to the link that is part of the

shortest path at each iteration even though the average

price via the next-hop router may not be the lowest. If

instead we forwarded traffic via the next-hop router

with the lowest average price, we get Gallager’s

approach, which is a distance vector solution.

Adapt split ratios dynamically and incrementally by

decreasing along links that belong to non-shortest

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

86 www.ijdcst.com

paths while increasing along the link that is part of the

shortest path at every router. If instead split ratios are

set to be positive instantaneously only to the links

leading to shortest paths, then we get OSPF with

weights, wu,v

III. SPECIAL CASES

In order to develop an intuitive understanding of why

our solution takes the form that it does, it is helpful to

consider a few concrete special cases first. These four

cases, each of which clearly highlights the reason for

including a particular factor in our solution,

progressively lead us to the final algorithm. In each

example, our algorithm design will exploit the fact

that the KKT optimality conditions [15] of the MCF

problem require that at the optimal solution the traffic

rate is positive only along paths with the lowest price.

The overall idea behind these examples is to design an

algorithm that reduces the network cost at each

iteration by moving to a routing assignment that

satisfies this condition. In Section V, we will extend

these ideas and show that the final algorithm that

iteratively reduces the network cost will also always

lead to the optimal routing assignment.

Finding the Right Split Dynamically

First, let us consider a very simple example illustrated

in Fig. 1(a). Here, there is traffic demand of rate with

the choice of two links, l and s, to go from A to B.

Assuming initially wl>ws, a simple strategy to reach

optimality will be to dynamically shift traffic at some

rate δ > 0 from the more expensive link to the cheaper

link till the prices of the two links become the same.

At node A, this would be equivalent to

αl decreasing αs and increasing at rate δ/r.

There are two ways to interpret and generalize the

intuition gained from this scenario. Both give the same

solution for this very simple example, but in general

will lead to different dynamics (see Fig. 2) and

possibly different split ratios. One interpretation,

which underpins the distance- vector algorithms, is

that the router should shift traffic away from

neighbors with higher average price to the neighbor

with the lowest average price. A different

interpretation, which is the basis of our protocol, is

that the router should shift traffic from links along

more expensive paths to the link along the path with

the lowest price. Mathematically, we reach the

following update rule for the split ratios:

where (u,v) € E but is not on the shortest path from to.

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

87 www.ijdcst.com

Figure 1 Four illustrative examples

Figure 2 Trajectories taken by Gallager’s algorithm

IV. GENERAL SOLUTION

We begin by defining n
t
u, the branch cardinality, as

the product of the number of branches encountered in

traversing the shortest path tree rooted at t from t to u.

It makes sure that routers on the tree that are farther

away from the destination shift traffic to the shortest

path more conservatively than routers that are closer

to the destination. At every iteration due to link-state

flooding, each node u has the link-state information to

run Dijkstra’s algorithm to compute the shortest path

tree to destination t. Here, additional care is required

because every node has to locally arrive at the same

shortest path tree to ensure that the algorithm proceeds

as expected. Therefore, at any stage, while running

Dijkstra’s algorithm locally, if there is ambiguity as to

which node should be added next, tie-breaking based

on node index is used. In other words, if at any

iteration there are multiple shortest paths to choose

from, tie-breaking is used to ensure that all routers

arrive at the same shortest path tree. The calculation

n
t
u of proceeds as shown in Algorithm1.

V. RELATED WORK

Over the years, due to its importance, traffic

engineering has attracted a lot of research attention.

We provide a brief overview of major related results

from different communities such as control,

optimization, and networking. Broadly, the existing

work can be divided into OSPF-TE, MPLS-TE, traffic

demand agnostic/ oblivious routing protocol design,

and optimal routing algorithms.

The work on OSPF [4], [8], [9] has concentrated on

using good heuristics to improve the centralized link

weight calculations. Although these techniques have

been shown to improve the algorithm’s performance

significantly by finding better weight settings, the

results are still far from optimal.

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

88 www.ijdcst.com

Typically, these and other centralized traffic

engineering techniques also require reliable estimates

or measurements of the input traffic statistics in the

form of a traffic matrix. While excellent work has

been done in traffic matrix estimation from link loads,

even the best results have errors on the order of 20%

[10], which can lead to bad traffic engineering.

Another approach is to directly measure the traffic to

every destination at every router. While it is possible

to globally aggregate the measurements into a traffic

matrix that can be fed to a traffic engineering

algorithm, it is more straightforward to use local

measurements locally. Also, usually it is smoother and

quicker to respond to changes locally when they do

occur. Thus, we are advocating a shift to relying

directly on link loads and local traffic measurements

instead of computing a traffic matrix for traffic

engineering.

A good way to avoid traffic matrices and a popular

way to implement traffic engineering today is MPLS-

TE [11], [12]. The idea is to compute end-to-end

tunnels for traffic demands with the available network

bandwidth being assigned to new traffic demands

using techniques like Constrained Shortest Path First.

However, here, the performance gained over OSPF

comes at the cost of establishing multiple end-to-end

virtual circuits. Moreover, as the traffic changes, the

end-to-end virtual circuits that were established for a

particular traffic pattern become less useful, and

performance degrades.

Oblivious routing has also been proposed as a way

around using traffic matrices for traffic engineering.

The idea is to come up with a routing assignment that

performs well irrespective of the traffic demand by

comparing the “oblivious performance ratio” of the

routing, i.e., the worst-case performance of the routing

for a given network over all possible demands.

Breakthrough work in this area includes papers by

Applegate and Cohen [13] that developed a linear

programming method to determine the best oblivious

routing solution for the special case of minimizing

maximum channel utilization and Kodialam et al. [14]

that focused on maximizing throughput for the special

case of two-phase routing. However, oblivious routing

solutions do not adapt well to changes in the network

VI. CONCLUSION

In this paper, I developed the first link-state, hop-by-

hop routing algorithm that optimally solves the traffic

engineering problem for intra-domain routing on the

Internet. Furthermore, we showed that based on

feedback from the link-state updates, the protocol

automatically adapts to input traffic and topology

changes by adjusting router split ratios. We also

provided guidelines on implementing my project by

translating the theoretical model to a discrete

implementation for numerical evaluations and then to

a physical testbed built on NetFPGA boards.

Importantly, although they did not satisfy the

theoretical assumptions about continuous split ratio

updates and synchronization between the routers, the

numerical and experimental evaluations backed up our

theoretical predictions about the performance and

adaptively of this project. In terms of future directions,

there are still interesting areas to be explored. For

instance, the convergence rate of the algorithm needs

to be analyzed. Another direction involves developing

the theory behind the performance of algorithm in the

absence of synchronous link-state updates and

executions.

REFERENCES

[1] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost

of not splitting in routing: characterization and

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-14
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

89 www.ijdcst.com

estimation,” IEEE/ACM Trans. Netw., vol. 19, no. 6,

pp. 1849–1859, Dec. 2011.

[2] R. Gallager, “A minimum delay routing algorithm

using distributed computation,” IEEE Trans.

Commun., vol. COM-25, no. 1, pp. 73–85,

Jan. 1977.

[3] L. Fratta,M.Gerla, and L. Kleinrock, “The flow

deviation method: An approach to store-and-forward

communication network design,” Networks, vol. 3, no.

2, pp. 97–133, 1973.

[4] J. F. Kurose and K. W. Ross, Computer

Networking: A Top-Down Approach, 5/E. New York,

NY, USA: Addison-Wesley, 2010.

[5] D. Bertsekas and E. Gafni, “Projected newton

methods and optimization of multicommodity flows,”

IEEE Trans. Autom. Control, vol. AC-28, no. 12, pp.

1090–1096, Dec. 1983.

[6] D. Xu, M. Chiang, and J. Rexford, “Link-state

routing with hop-by-hop forwarding can achieve

optimal traffic engineering,” IEEE/ACMTrans. Netw.,

vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[7] A. Sridharan, R. Guerin, and C. Diot, “Achieving

near-optimal traffic engineering solutions for current

OSPF/IS-IS networks,” IEEE/ACM Trans. Netw., vol.

13, no. 2, pp. 234–247, Apr. 2005.

[8] S. Srivastava, G. Agrawal, M. Pioro, and D.

Medhi, “Determining link weight system under

various objectives for OSPF networks using a

lagrangian relaxation-based approach,” IEEE Trans.

Netw. Service Manag., vol. 2, no. 1, pp. 9–18, Nov.

2005.

[9] Y. Zhang, M. Roughan, N. Duffield, and A.

Greenberg, “Fast accurate computation of large-scale

IP traffic matrices from link loads,” in Proc. ACM

SIGMETRICS, New York, NY, USA, 2003, pp. 206–

217.

[10] D. Awduche, “MPLS and traffic engineering in

IP networks,” IEEE Commun. Mag., vol. 37, no. 12,

pp. 42–47, Dec. 1999.

[11] A. Elwalid, C. Jin, S. Low, and I. Widjaja,

“MATE: MPLS adaptive traffic engineering,” in Proc.

20th Annu. IEEE INFOCOM, 2001, vol.

[12] C. E. Agnew, “On quadratic adaptive routing

algorithms,” Commun. ACM, vol. 19, no. 1, pp. 18–

22, Jan. 1976.

[13] M. Kodialam, T. V. Lakshman, J. Orlin, and S.

Sengupta, “Oblivious routing of highly variable traffic

in service overlays and IP backbones,” IEEE/ACM

Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2009.

[14] S. Boyd and L. Vandenberghe, Convex

Optimization. NewYork,NY, USA: Cambridge Univ.

Press, 2004.

